

The 13th Asia-Pacific Primary Liver Cancer Expert Meeting

Novel Insights into the Evolution of Liver Cancer Management July 6-8, 2023 | Grand InterContinental Seoul Parnas, Seoul, Korea

Comparison of Dosimetry Models to Predict Outcome for Radioembolization in Patients with Intermediate to Advanced Hepatocellular Carcinoma

Hui-Chi Liu, M.D.¹, Po-Chin Liang, M.D., Ph.D.^{1,2} and Chih-Horng Wu, M.D., Ph.D.^{1,2,3}

¹Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan ²Department of Radiology, College of Medicine, National Taiwan University, Taipei, Taiwan ³Hepatits Research Center, National Taiwan University Hospital, Taipei, Taiwan

Background and Aim

- Yttrium-90 (Y90) radioembolization is an effective locoregional therapy for hepatocellular carcinoma (HCC), which served as an alternative for patients with more extensive tumor burden or vascular invasion in Asian countries.
- No previous study compares the outcome of the body surface area model (BSA) and the partition model (PM) for resin-based Y-90 particles.
- We aim to compare two dosimetry models in BCLC B to C patients and determine whether there is an optimal tumor dose to predict better outcomes.

Dosimetry methods for resin-based Y90 particles

BSA model

• Activity [GBq] = (BSA-0.2)+($\frac{tumor \ volume}{total \ liver \ volume}$)

BSA, Body surface area

Partition model

• Activity
$$[GBq] = \frac{D[Gy] \times (\frac{T}{N} \times M_{tumor}[kg] + M_{normal}[kg])}{50[J/GBq] \times (1 - lung shunt)}$$

• **T/N ratio** = $\frac{A_{tumor}/M_{tumor}}{A_{normal liver}/M_{normal liver}}$ (from Tc-MAA image)

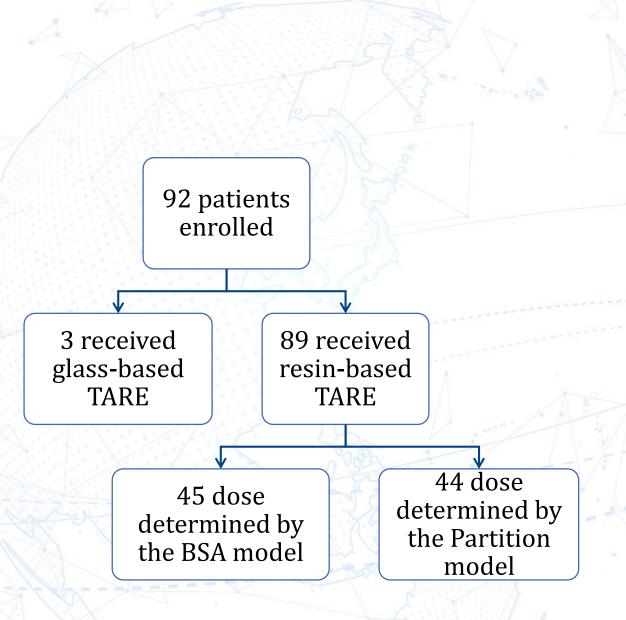
D, Estimated dose M, Mass

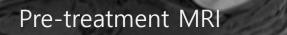
Methods

- Retrospective cohort study in a single tertiary medical center in Taiwan, between May 2016 to September 2019
- 89 patients with intermediate to advanced HCCs are eligable
- Analysis
 - Kaplan-Meier analysis for overall survival (OS)
 - Clinical data, laboratory profiles and dosimetry parameters were collected.
 - The dosimetry parameters of the BSA group were retrospectively calculated.
 - Univariate and multivariable analysis for prognostic factors of OS were performed using Cox proportional-hazards model.

Patient enrollment

Inclusion criteria

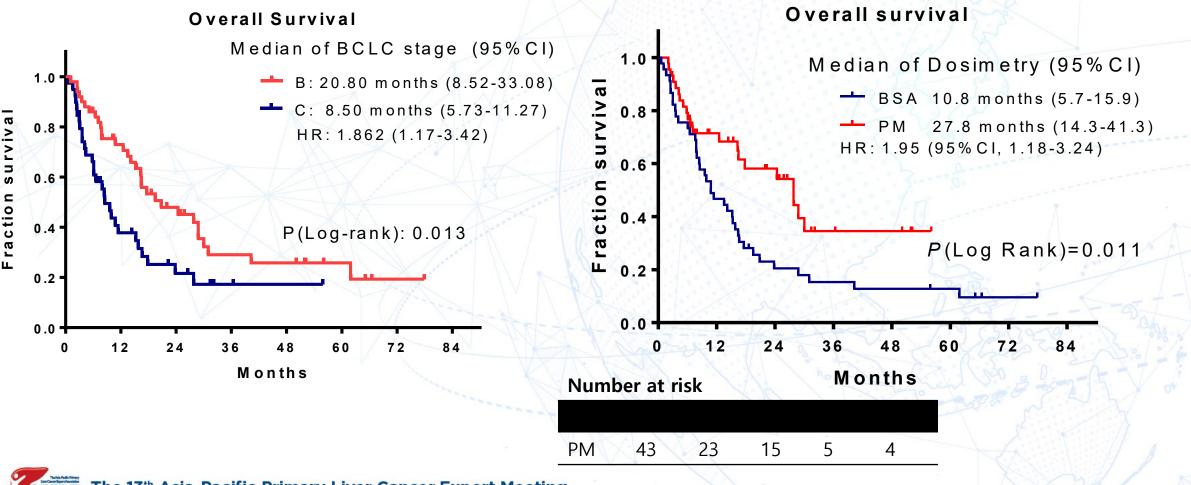

- BCLC stage B & C
- Child-pugh A-B
- Post TACE/TAE >3 months interval


Exclusion criteria

- Bil>1.5X ULN
- Hepatopulmonary shunt leading to a lung dose > 30Gy
- Previous external beam radiotherapy
- Tumor burden > 50% of liver

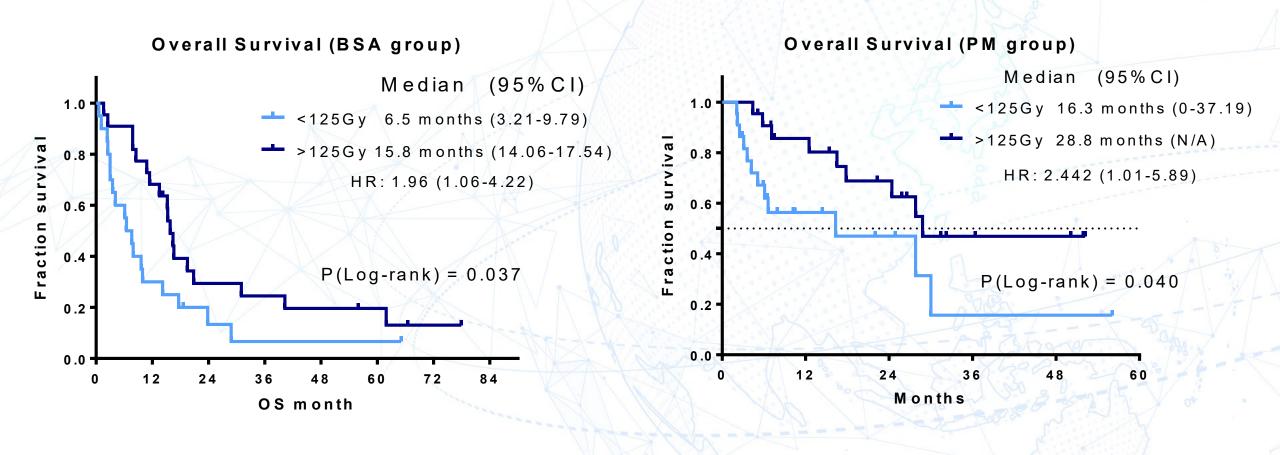
TARE, transarterial radioembolization

B



Tc99-MAA

Post-TARE CT at 4th month


Figure 1. A serial images of one patient underwent Y90radioembolization with dose determined by the partition method. (A) The staging MRI shows a 9.2cm hepatocellular carcinoma in S5-8 with initial stage cT3N0M0. (B) Tc-MAA image obtained before Y90-TARE to predict dose distribution and lung shunt. (C) Radioembolization with 1.4GBq Y-90 microsphere (SIRsphere) delivered in right hepatic artery. The estimated tumor dose was 150.34Gy; normal liver dose was 14.95Gy. (D) On the 4-month follow-up, CT shows significant shrinkage of the HCC (5.5cm) in S5-8.

Comparison of OS Stratified by BCLC stage and dosimetry models

Apple The 13th Asia-Pacific Primary Liver Cancer Expert Meeting

Subgroup Comparison of OS Stratified by Tumor Dose

Univariate and multivariable analysis (Cox proportional-hazards of OS)

	Univariate			Multivariable		
Characteristics	P-value	HR	95%CI	P-value	HR	95%CI
Age	0.469	1.01	0.984-1.036	$\langle \rangle$	125	
Sex M vs F	0.073	1.983	0.938-4.190			
BCLC C vs B	0.015*	1.899	1.134-3.182	0.286	1.422	0.744-2.724
AFP Level (>400)	0.001*	2.515	1.494-4.235	0.107	1.756	0.886-3.481
Child B vs A	0.019*	3.099	1.201-7.994	0.238	1.953	1.705-5.917
Unilobar vs Bilobar	0.067	0.617	0.368-1.034			
Dosimetry (PM vs BSA)	0.013*	0.507	0.297-0.865	0.012*	0.491	0.282-0.854
TN ratio	0.239	1.037	0.976-1.102			
Tumor Dose (>125)	0.005*	0.467	0.275-0.793	0.019*	0.514	0.294-0.898
Post-Y90 Curative Tx	0.001*	0.291	0.145-0.587	0.066	0.483	0.222-1.050

CAPPLE The 13th Asia-Pacific Primary Liver Cancer Expert Meeting

Conclusion

- Multivariable analysis demonstrated that dosimetry method and tumor dose (>125Gy) are significant independent prognostic factors.
- Y-90 radioembolization with partition model and tumor dose over 125Gy improved OS in patients with intermediate to advanced HCCs.
- Limitation
 - This is a retrospective, single medical center study. The tumor dose of the BSA group was derived indirectly by re-accessing the previous images, discrepency may present from pratical condition.

The 13th Asia-Pacific Primary Liver Cancer Expert Meeting

Dr. Hui-chi Liu Email: iris.liu1116@gmail.com